

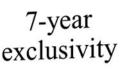
Bridging Patient Needs with Regulatory Flexibility in Rare Disease Drug Development

Bilal AbuAsal, PhD
Office of Clinical Pharmacology
FDA

Disclaimer

The contents of this presentation are my own and do not necessarily reflect the views and/or policies of the U.S. Food and Drug Administration

Challenges with Rare Diseases


FDA

- Limited number of patients
 - > Trial design challenges
 - ➤ Limitation of number of patients → power
 - > Recruitment
- Lack of understanding of disease, diagnosis and natural history → Endpoint selection
- Discovery and development challenges
 - ➤ Lack of good animal models and translational PK/PD application :
 - **Biomarkers**
 - **▶** Dose selection

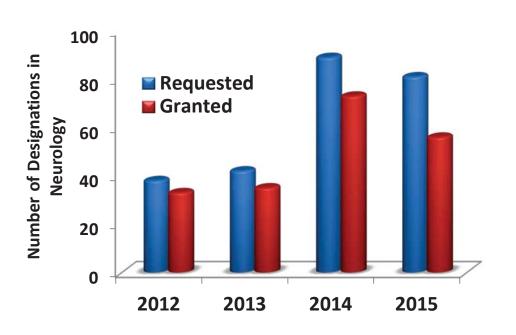
Incentives for Orphan Drug Development

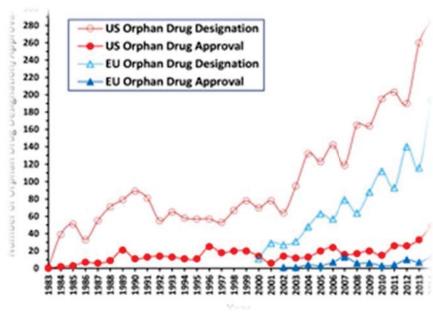
Priority review vouchers

Waiver of application fees

Tax credit (up to 50% of cost) FDA assistance during development

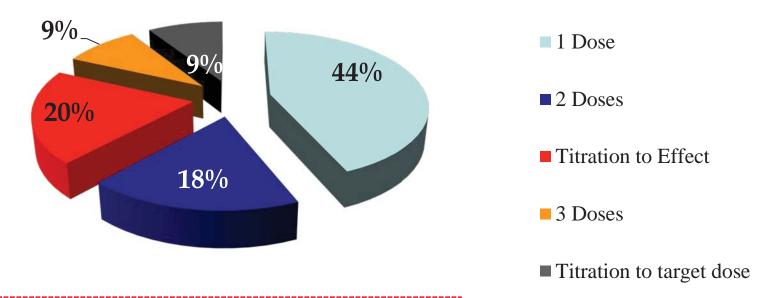
Regulations |


Guidelines


Grants: Natural history study Guidance and flexibility with the review

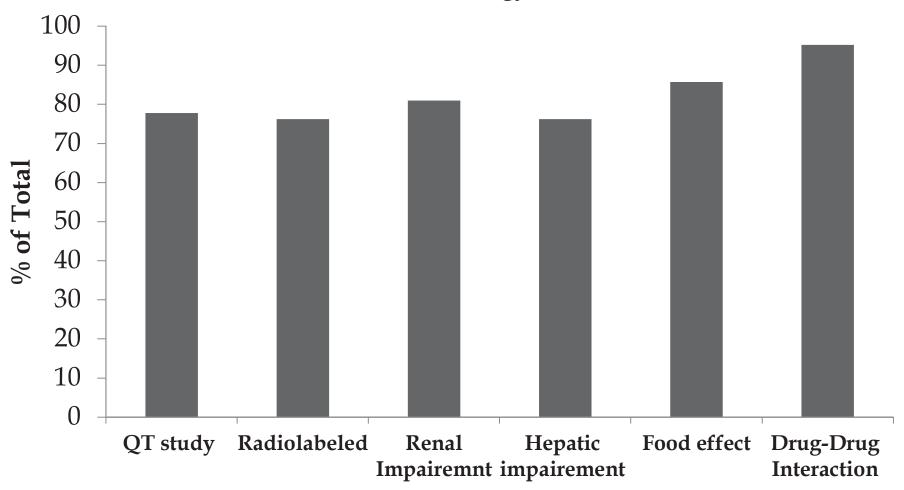
Orphan Drugs Development in USA and EU

- Before the Orphan Drug Act → only 10 treatments had been developed for rare diseases
- More than 400 orphan products are approved currently.
- Less than 20% of drugs receiving orphan drug designations get approved


Role of Clinical Pharmacology In Rare disease drug Development

- Dose Finding
- Dose Individualization (Effect of Intrinsic and extrinsic Factors)
- Biopharmaceutical Challenges
 - PK bridging to clinical trial formulation (CTF)
 - Case study (Deflazacort for DMD)

Dose finding


>60% are either a single dose or TTE

- Translational PK/PD and PBPK
- Biomarkers for efficacy
- Animal models
- Tissue distribution and target site concentration

Dose Individualization based on Clinical **Pharmacology Studies**

Clinical Pharmacology Studies Post-Approval

Studies of effects of renal or hepatic impairment potentially can be <u>deferred until after approval</u>, or even waived, if the patient population and metabolic pathways of the drug, considered together, suggest a low likelihood of clinically meaningful effects on pharmacokinetics or pharmacodynamics.

Dose Individualization Early (Effect of Intrinsic & Extrinsic Factors)

- More inclusive Phase 3 studies
 - Extrinsic/Intrinsic factors characterized
 - Mitigate safety concerns
- Individualization of dose
- No feasibility issues (not disease population)
- FDA accepts only plausible and justified flexibilities
 - PBPK waiver with DDIs
 - Collect PK samples in P3 studies
 - PopPK and Exposure Response Analyses

Case Study: (Deflazacort for Duchenne muscular dystrophy (DMD)

- DMD is a rare disease (1 in 3,500 live male births) that occurs as a result of mutations in the dystrophin gene.
- These mutations lead to an absence of or defect in the protein dystrophin, which results in progressive muscle degeneration.

Approved Drugs:

- Eteplirsen(Exondys 51[®])
- Deflazacort (Emflaza[®])

Deflazacort, a glucocorticoid, is an oxazoline derivative of prednisone, and has demonstrated anti-inflammatory and immunosuppressant effects.

Deflazacort (EMFLAZA®) Developmen Program

Efficacy Registration Studies:

Study	Doses (mg/kg)	Duration	Control	1o Endpoint
MP-104-NM- 001	0.9, 1.2 QD	12-week	Placebo or 0.75 prednisone	Muscle strength
MP-104-NM- 002	2 QOD	2 years	Placebo	Muscle strength

Clinical pharmacology studies:

- Renal impairment (ESRD Patients)
- Hepatic impairment
- DDI (CYP3A4 inhibitors and inducers)
- Food effect; Bridge the suspension to tablets
- Bridge Calcort ® → To-be marketed formulation
- PK in pediatrics and adolescence (DMD Patients)

PK Bridging to the Clinical Formulation Issue:

- FDA
- ➤ Study was conducted 20 years ago → Clinical trial formulation is not available (No PK bridge to TBMF)
 - No PK data in efficacy studies.
 - No dissolution data, not a class 1.

Issue resolving approach:

TBMF Exposure > 0.9 mg/kg Or Exposure < 0.9 mg/kg

- Clinical Experience (Exposure Response)
 - 0.9 and 1.2 have similar efficacy
 - Bridge against Calcort ® (Deflazacort Not approved for DMD in Europe) → Safety is not an issue if EMFLAZA has higher exposure
- > Different formulations have similar BA
 - Suspension, Crushed tablets, different tablet formulation.
 - No Food effect with different formulation
- PBPK absorption prediction

Mechanistic Prediction of Fraction Absorbed (Fa)

Fa: is the fraction disappearing from the lumen Formulation changes for oral small molecules are expected to affect only Fa.

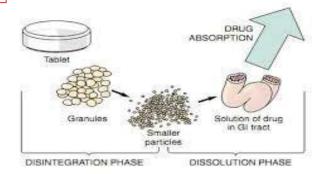
Tablets =Suspensions

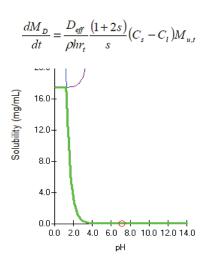
- Although suspension has solubilizing agents but still Tablets are as good
- Tablet hardness is not an issue

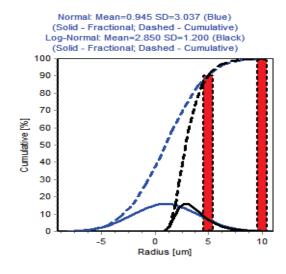
Dissolution Factors

 PSD, pH Solubility and Physiological PH.
 Precipitation time

PBPK Simulations




Figure 29-1 Phases of Solid Drug Absorption


Biopharmaceutical and Physicochemical properties in relation to absorption

Biopharmaceutics & formulation related parameters

Dose and dosage form
Dose volume
Precipitation time
Diffusion coefficient
Particle size distribution
PH solubility profile
Permeability

PSA:

Prec time: No effect

Permeability: No effect

Fraction absorbed: 99%

Dissolution number: 2.4 >1
Absorption number: 6.4 >1

Supportive evidence

Source: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208684,208685Orig1s000ClinPharmR.pdf

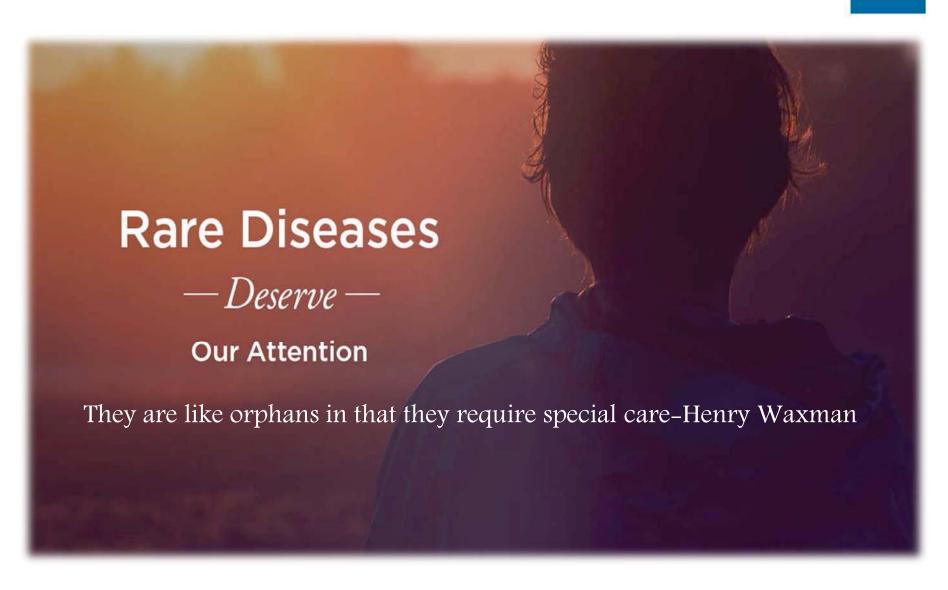
Interactions with the FDA

- Interaction and dialogue with the FDA is important
- Applications for which a pre-NDA meeting with the FDA was not held have a more than eight-fold (OR = 8.33; 95%CI = 1.6–44.6) increase in the probability of rejection
- Talk to us; we can help

Interactions with the FDA

Pre-IND **EOPI** EOPII Pre-NDA Labeling

- CPIM is a means by which CDER and investigators from industry, academia, patient advocacy groups, and government can communicate to improve efficiency drug development.
- **Scope:** Biomarkers, Clinical outcome and endpoints, Emerging technologies, natural history studies, novel trial designs



- Salwa Albusaysi, Pharm.D; PhD. Candidate
- Sreedharan Sabarinath, Ph.D
- Deflazacort review team
- DCP1 management:
 - Mehul Mehta, Ph.D
 - Ramana Uppoor, Ph.D

THANK YOU

